3 research outputs found

    PO-252 Effect of acupuncture intervention on the changes of cytoplasmic and mitochondrial Ca2+ concentration following eccentric contractions in rat skeletal muscle

    Get PDF
      Objective The purpose of this study was to evaluate the effect of acupuncture intervention on the changes of cytoplasmic and mitochondrial Ca2+ concentration following eccentric contractions (ECC) in rat skeletal muscle. Methods 24 healthy male Wistar rats were randomly divided into 4 groups: control group (C, n=6)、electrical stimulation group (E, n=6)、electrical stimulation group with acupuncture intervention (EA, n=6)、electrical stimulation group with acupuncture +TRP channel inhibitor Gd3+ (EAI, n=6). The animal model of eccentric induced skeletal muscle injury was established by electrical stimulation on spinotrapezius muscle of anaesthetised rats in vivo, that is to say, the intact spinotrapezius muscle of adult Wistar rats was exteriorized, and tetanic eccentric contractions (100 Hz, 10 sets of 50 contractions) were elicited by electrical stimulation during synchronized muscle stretch of 10% resting muscle length. Cytoplasmic Ca2+ accumulation were determined by loading the muscle with fura 4-AM using fluorescent imaging in vivo, and mitochondrial Ca2+ concentration were determined by loading the muscle with fura 2-AM using fluorescent imaging in vitro, and recorded changes of muscle maximum tetanic force. Results (1) In vivo, compared with the C , cytoplasmic Ca2+ accumulation increased more rapidly during ECC in the E (P < 0.001). Acupuncture intervention significantly reduced cytosolic Ca2+ accumulation in the EA compared with the E (P < 0.01), and we discovered that muscle deformation generated by acupuncture intervention induced a robust Ca2+ spark response confined in close spatial proximity to the sarcolemmal membrane in intact muscle fibers. Although no significant differences between the EA and EAI, Gd3+ abolished the majority of cytoplasmic Ca2+ accumulation decrease during ECC in the EAI and a robust Ca2+ spark response disappeared compared with the EA. (2) In vitro, compared with the C, mitochondrial Ca2+ concentration did not elevations in MCC in the E. EA cytoplasmic Ca2+ increased rapidly above the C and E (P < 0.01), respectively, but EAI significantly attenuated the increases in  mitochondrial Ca2+ concentration compared with the EA (P < 0.01). (3). Compared with the C , maximum tetanic force was significantly lower in the E after ECC (P < 0.01). EA maximum tetanic force increased rapidly compared with the E after ECC (P < 0.05), but EAL abolished the majority maximum tetanic force increase after ECC (P < 0.05). Conclusions (1)Eccentric contraction caused cytoplasmic Ca2+ accumulation, but  mitochondrial Ca2+ concentration decrease. (2)Acupuncture can effectively reduce cytosolic Ca2+ overload, following by mitochondrial Ca2+ concentration increase , which in turn abnormally high cytoplasmic Ca2+ levels are buffed by the mitochondria, and improved muscle function, and the effect was associated to the TRP channels. &nbsp

    Effect of Carbon Ion Radiation Induces Bystander Effect on Metastasis of A549 Cells and Metabonomic Correlation Analysis

    Get PDF
    ObjectiveTo analyze the effect of carbon ion (12C6+) radiation may induce bystander effect on A549 cell metastasis and metabonomics.MethodsA549 cell was irradiated with carbon ion to establish the clone survival model and the transwell matrix assay was applied to measure the effect of carbon ion on cell viability, migration, and invasion, respectively. Normal human embryonic lung fibroblasts (WI-38) were irradiated with carbon ions of 0 and 2 Gy and then transferred to A549 cell co-culture medium for 24 h. The migration and invasion of A549 cells were detected by the Transwell chamber. The analysis of metabonomic information in transfer medium by liquid phase mass spectrometry (LC-MS), The differential molecules were obtained by principal pomponent analysis (PCA) and the target proteins of significant differences (p = 1.7 × 10−3) obtained by combining with the STICH database. KEGG pathway was used to analyze the enrichment of the target protein pathway.ResultsCompared with 0 Gy, the colony formation, migration, and invasion of A549 cells were significantly inhibited by carbon ion 2 and 4 Gy irradiation, while the inhibitory effect was not significant after 1 Gy irradiation. Compared with 0 Gy, the culture medium 24 h after carbon ion 2 Gy irradiation significantly inhibited the metastasis of tumor cells (p = 0.03). LC-MS analysis showed that 23 differential metabolites were obtained in the cell culture medium 24 h after carbon ion 0 and 2 Gy irradiation (9 up-regulated and 14 down-regulated). Among them, two were up-regulated and two down-regulated (p = 2.9 × 10−3). 41 target proteins were corresponding to these four differential molecules. Through the analysis of the KEGG signal pathway, it was found that these target molecules were mainly enriched in purine metabolism, tyrosine metabolism, cysteine and methionine metabolism, peroxisome, and carbon metabolism. Neuroactive ligand-receptor interaction, calcium signaling pathway, arachidonic acid metabolism, and Fc epsilon RI signaling pathway.ConclusionThe bystander effect induced by 2 Gy carbon ion radiation inhibits the metastasis of tumor cells, which indicates that carbon ions may change the metabolites of irradiated cells, so that it may indirectly affect the metabolism of tumor cell growth microenvironment, thus inhibiting the metastasis of malignant tumor cells

    Genomic diversity of Yersinia pestis from Yunnan Province, China, implies a potential common ancestor as the source of two plague epidemics

    No full text
    Abstract Plague, caused by Yersinia pestis, is a zoonotic disease that can reemerge and cause outbreaks following decades of latency in natural plague foci. However, the genetic diversity and spread pattern of Y. pestis during these epidemic-silent cycles remain unclear. In this study, we analyze 356 Y. pestis genomes isolated between 1952 and 2016 in the Yunnan Rattus tanezumi plague focus, China, covering two epidemic-silent cycles. Through high-resolution genomic epidemiological analysis, we find that 96% of Y. pestis genomes belong to phylogroup 1.ORI2 and are subdivided into two sister clades (Sublineage1 and Sublineage2) characterized by different temporal-spatial distributions and genetic diversity. Most of the Sublineage1 strains are isolated from the first epidemic-silent cycle, while Sublineage2 strains are predominantly from the second cycle and revealing a west to east spread. The two sister clades evolved in parallel from a common ancestor and independently lead to two separate epidemics, confirming that the pathogen responsible for the second epidemic following the silent interval is not a descendant of the causative strain of the first epidemic. Our results provide a mechanism for defining epidemic-silent cycles in natural plague foci, which is valuable in the prevention and control of future plague outbreaks
    corecore